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ABSTRACT

Global stability of an epidemic model for vectorsbe disease was studied by Yang et al. [7]. A restigation of
the model with a saturated incidence rate andanent function proportionate to infectious popolat is presented to
understand the effect of the capacity for treatmém equivalent system is obtained, which has twailériums: a

disease-free equilibrium and an endemic equilibrilihe stability of these two equilibriums can batcolled by the basic
reproduction numbeDo. The global stability of the disease-free equiilibr state is established by Lyapunov method and
a geometric approach is used for the global stgbdf the endemic equilibrium state. The model kaglobally

asymptotically stable disease-free solution whenthebasic reproduction numb@0 is less than or equal unity and has

a unigue positive globally asymptotically stablelemic equilibrium Wheneveﬂ0 exceeds unity. Numerical examples

are given for the modelith different values of the paramete@ aphical presentations are also provided. Thelldetee

supplemented by numerical results given in annexure

KEYWORDS: Epidemic Model Vector-Borne Diseas&aturated Incidence&quilibrium Point, StabilityReproduction

Number, Treatment Function
AMS Subject Classification: 92D25, 92D30.
1. INTRODUCTION

The main purpose of this paper is to study the dyos of Vector-borne disease and understand tleetedf the
capacity for treatment. Vector-borne diseases mfiectious diseases caused by viruses, bacterigpzm® or rickettsia
which are primarily transmitted by disease transngt biological agents (anthropoids), called vestonho carry the
disease without getting it themselves. Globally)aria is the most prevalent vector-borne diseasesetvectors are the
mosquitoes. The mosquitoes are vectors of a nuotbiefectious diseases most prominent among whiehdangue (the
second most important vector-borne disease), yelemer, St Louis Encephalitis, Japanese Enceptiatitid West Nile
Fever, caused by the West Nile Virus. The litematdealing with the mathematical theory and dynarofcgector-borne
diseases are quite extensive. Many mathematicaklmambncerning the emergence and reemergence ofettier-host
infectious disease have been proposed and anailyzkd literature [9, 10]. The mathematical modslepidemiology for
the West Nile virus and for dengue have been iiyatgd in [1, 3] and [10, 11].

Mathematical modeling became considerable impottoitin the study of epidemiology because ilpkd us
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to understand the observed epidemiologicaltepsd, disease control and provide understandirfpeo underlying
mechanisms which influence the spread of diseasenaydsuggest control strategies. The model fornmrdaand its
simulation with parameter estimation allow us tst tr sensitivity and comparison of conjuncturéseatment plays an
important role to control or decrease the spreatisgfases. Kar et al. [16,17] and Ujjainkar ef4lproposed an epidemic
model with treatment function. Wei et al. [6] intigated an epidemic model of a vector-borne disesitke direct
transmission and the vector-mediated transmis3iba.global stability of an epidemic model for veebmrne disease was
studied by Yang et al. [7]. Here we have reanalyted model [7] with saturated incidence and a tneat function

proportionate to infectious populatibnThe only mode of transmission in this model imtlyh the vector.

The paper is organized as follows: In Section 2jeator-host epidemic model with vector transmissids
presented, where the dynamics of the hosts andngeate described R andS model, respectively. Equilibrium points
and reproduction number are obtained in Sectiorh8.analysis of stability of the equilibrium of thedel is investigated

in Section 4 and Section 5. Numerical analysis@mtlusion are given in Section 6 and Section 7.
2. THE MATHEMATICAL MODEL

In this section, a vector-host epidemic model wigttor transmissions is presented and investigatadre the

dynamics of the human hosts and vectors are destiily SR and S model, respectively. The total host population

Nl(t) is partitioned into three distinct epidemiologicalbclasses which are susceptible, infectious aocovezed, with
sizes denoted b$(t), | (t) and R(t), respectively, and the total vector populatidh (t) is divided into susceptible

and infectious, with the sizes denoted l}(t) andV (1), respectively.

The dynamics of this infectious disease in the host vector populations are described by the foligveystem

of nonlinear diferential equations:

as_ . _ ASV —us

dt A+aVv) "

a__ AV -yl =l =l

d @1+aV) ' ’

drR

— =yl = R+rl, 2.1
a NA (2.1)
dm

E: , =AM =M,

dv

E:AZMl_IJZV'

With the initial Conditions5(0) = §,, 1(0)=1,, R(0)=R,,M(0) =M, andV(0) =V,.
The parameters in the model stand for

bl: Recruitment rate constant in the host population
b2: Recruitment rate constant in the vector poputatio
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A4 = Death rate constant in the host population

L, = Death rate constant in the vector population
y = Recovery rate constant in the host population

/]1: Transmission rate from infected vector populatimsusceptible host population
/]2 = Transmission rate from infected host populatmsusceptible vector population

a, =Constant parameter

r = Treatment rate constant in the host population.

It is assumed that all parameters are posifive total dynamics of host population can be deitezthfrom the

differential equationdN, / dt =b, — £ N, which is derived by adding first three equationssgétem (2.1). The total

dynamics of vector population can be determinednfrihe differential equatioreN, / dt =b, = £,N, which is
derived by adding last two equations of system)(2t1s easily seen that both for the host popafaand for the vector

population the corresponding total population sizese asymptotically constantzlim N, =b/ y and
Itim N, =b,/ 1,. This implies that in our model we can assume euthloss of generality tha¥, =,/ 1/,
N, =b,/ 1, for all t> 0 provided tha§(0) + 1 (0)+ R(0)=b, /1, M(0)+V (0)=h, /1, .

Therefore, we attact system (2.1) by studying thesgstem given by

ds ASV

Rop -0 s,

o2 wray) P

d . ASv

a__ AN -, 22
i Graw) N A (2.2)
v (b

NPy - v

A R

From biological considerations, we study the gys{2.2) in the closedet
r={(s1,VeR¥:0<S+|<b /1,0sV<h /1,,S20, 2 C,
Where Rf denotes the nonnegative conefef including its lower dimensional faces. ObviouElis

positively invariant set of (2.2)e denote byd[” and M0 the boundary and the interior Bfin R3, respectively.

3. MATHEMATICAL ANALYSIS OF THE MODEL

Equilibrium points of model (2.2) can be obtaineg equating right hand side to zero. The syster®) (Bas two
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b

1

equilibrium states the disease-free equilibriurﬂEo = ( , 0, 0) 0l and a unique endemic equilibrium
E”=(s",1°v") Or® with

. (y+,ul+r)(1+aflv*)|D

S = W , (3.1)
|0 = AAbb, _:ujtuzz(y"' HitT) (3.2)
A+ +0) [ Ab,+ py(p,+ab)) ]
Vo= A0, ’ )
14 (1, + 2,17 &3

The dynamics of the disease are described by thie baproduction numbdﬂO.The threshold quantitﬂois

called the reproduction number, which is definedhasaverage number of secondary infections prodbgeah infected

individual in a completely susceptible populatidhe basic reproduction number of model (2.2) iggity the expression

D o — Al/] 2b1b2

= . (3.9)
L (Y + f+ 1)

For U, <1, the only equilibrium is disease-free equilibridg in 0" and for L1, >L,there is a unique endemic
equilibrium E” in T° .
4. STABILITY OF THE DISEASE-FREE EQUILIBRIUM

In this section we discuss the stability of theedse-free equilibriunEO .

Theorem 4.1: The disease-free equilibrium B, of (2.2) is locally asymptotically stable in T" if U, <1; it is
unstableif [, >1.

Proof: To discuss the stability of the system (2.2) theagnal matrix is

AV S

- + 0 - 1
(1+a’1V ”1j (1+ayv)

AV S
J= — ~(yrurr) ————
1+aV ! (1+aVv)’
0 /lz(b—z—Vj SO+ )

H,

b

At the equilibrium pointE0 = (—, 0, 0), the variational matrix becomes
1
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—H 0 _Albl
H
IEY=| 0 —(rp+r)y B
Hy
0 _/]sz —H,
H;

Its characteristic equation is
() 1+ ) A+ i+ 1) =220 =g
HH,

= (A+)[A2+(y+ phy+1 + ) A+ p(y+ py+1) (1-0,)] =0 (4.1)

By Descartes rule of sign all roots of equatiori)4ire negative it 1, <1 .Thus, if L, <1 then the disease-free

equilibrium E; is locally asymptotically stable; Otherwise,Lif, >1then it is unstable.

Theorem 4.2:1f L <1, then the disease - free equilibrium E; is globally asymptotically stableinT.

Proof: To establish the global stability of the diseasefequilibrium, we construct the following Lyapunov

function:
L= p4pil +ApV .

Clearly, L = 0 along the solutions of the system (2.2) and is Z&rand only if both| andV are zero.

Calculating the time derivative dfalong the solutions of system (2.2), we obtain

L:;zlyz I.+/11b1\'/
=Mﬂz{ﬂ—(y+m+r)l}/hb{/lz(%-VJl -ﬂz\/}

1+aV) A
Abb
s Mﬂz/]l%v _{ﬂﬂz(y*’ﬂl + r) _%} | =AM = Abuy

=-1 [/ul,uz(y"':ul"'r)(l_mo) +/11/12b1\/]
<0,

b

1
Where in the first inequality we have used the thet ———— <1 and S<— inT. In addition, the last
d+aV) H

inequality follows from the assumption thatl, <1. Thus L(t) is negative if]; <1.When [, <1, the derivativel. =

0 if and only if | = 0, while in the casd-ﬂo =1 the derivativeL = 0 if and only if| =0 orV = 0. Consequently, the
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largest compact invariant set§(S, 1, V) € I': L= 0} when Do <1, is the singleton Eo}- Hence, LaSalle’s invariance

principle [8] implies thatEO is globally asymptotically stable in This completes the proof.
STABILITY OF THE ENDEMIC EQUILIBRIUM

In this section we discuss the stability of theamit equilibrium E”.
Theorem 5.1:1f Do >1, then the endemic equilibrium E” of (2.2) islocally asymptotically stable in re.

Proof: At the equilibrium point ED, the variational matrix becomes

AV® AS’
w0 ey

o _ AA AS
J(E)= -(y+y+r) —=
( ) 1+ al\/D (y iul ) (1+ a1VD)2
0 A, [% —ij ~( A1 9+ 11,)

2
Its characteristic equation is

A +al*+al+a,=0, (5.1)
Where

i

al‘lfvvg+2ﬂl+y+r+uz+/1 1720,

AV AVE
az{ . +ﬂ1}(y+ul+r){ +2#1+y+r}(u2+/12ID)

1+aV"© 1+aV”
— Al/128|] (bZ Vj
(1+0'1V) M,
= /]VD +2U Y+ /1I + /]VD + U (V"',U"',U +r)
:|.+6]'VD ! 1+ VD 1 1 2
AAST (b,
+/~’2(V+#1+r)_(1:crzvu)(72_vmj
1
| AV AV°
LWVD*Z‘“V”}' ! +L+alvu+/~fl}(y+ul+u2+r) [ from (2.2)]
>0
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AVE
a, :{1—+ﬂ1}(y+ﬂ1+r)(ﬂz +/]2ID)

1+aV”
_ ,u1/]1/]2SD (&_VDJ
(1+(]’1\/D)2 H;

/]1/]2VD|D /]l,uz\/D .
> Al
>(y-ir'ul+r)|:(1+a'l\/m)+(1+a'1\/D)+'ul ?

AAS (b
+lullUZ(y+lul+r)_(ili_;,i/D)[i_VDj
1

/11/12VDI o /11,uz\/D .
+ + 1Al from (2.2

i)
=0

It can be easily seen tha,,a,,a, 2 0. By Descartes rule of sign all roots of equatibri) are negative. Thus,

the endemic equilibriunEIj is locally asymptotically stable T

Now, we analyze the global behavior of the endesmjgilibrium E”. Here, we use the geometrical approach of

Li and Muldowney [14] to investigate the glolshbility of the endemic equilibriurE*in the feasible regioh. We have
omitted the detailedntroduction of this approach and we refer the redéed readers to see [14]. We summatiie

approach below.

Let X f(X)OR" be a C' function forx in an open sdb ¢ R"_ Consider the differential equation

X = f(x). (5.2)
Denote byx (t, X,) the solution of (5.2) such th&f0, X,) = X;. We have following assumptions:

( Hl) D is simply connected;

( H2) There exists a compact absorbingket D;

( H3) Equation (5.2) has unique equilibriu;n in D.

LetP: x — P(x) be a nonsingular 2() X (2) matrix-valued function which i€ in D and a vector norm |- |

on R" , whereN = (2). Letu be the Lozinski”I measure with respect to the|. | -

Define a quantityq_2 as
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. 1t
g, =limsup SUP—{),U B&&X )Ms (5.3)

too  x-K1
Where B =P, P+ PJPP™ the matrix P, is obtained by replacing each enfrpf P by its derivative in the
direction off, ( By )f , and J™@ is the second additive compound matrix of the BesomatrixJ of (5.2). The following
result has been established in Li and Muldowney.[14
Theorem 5.2: Suppose that (H,), (H,) and (H,) hold, the unique endemic equilibrium E" is globally stable
in % if g, <O.
Obviously rois simply connected anfE is unique endemic equilibrium fdﬂ0 >1in T°. To apply the

result of the above theorem for global stabilityeafiemic equilibrium E , we first state and prove the following result.

Lemma 5.3:1f [, >1, then the system (2.2)is uniformly persistent in I"°
System (2.2) is said to be uniformly persistentifZhere exists a constant ¢ > 0, independenhitifal data in

FO, such that any solutiofg(t), I(t), V(1)) of (2.2) satisfies

liminf S>c, liminf | >c¢ , liminfV >c

tooo t-oo too

Provided (S0), 1(0), V(0)) O T°

The uniform persistence of (2.2) can be provedgpiyang a uniform persistence result in [5, Theo43), and

using a similar argument as in the proof of prof@si3.3 of [13]. The proof is omitted.

The boundedness df° and the above lemma imply that (2.2) has a conmgdasxrbing st c e [2]. Now we

shall prove that the quantitg{_2 <0.

Letx = (S, I ,V) andf(x) denote the vector field of (2.2). The Jacobianrixa = 0_ associated with a general
X

solutionx(t) of (2.2) is

_( AV “‘1) . __AS
1+aV (1+aV)
AV AS
J= 1 —(y+pu+r) ——— |
1+aV W) (1+aV)’
0 Az[i—vJ (A )
Iz

and its second additive compound matd’ is,
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a,ta, Ay; —a,3
J@ = as, a;, +ag; Ay, |
—a; a,, Aytag
_( AV +2ﬂl+y+fj AS : AS :
1+aVv (1+aVv) (1+aV)
(2 = &—V A +u+ A+
J /]2( . j (1+alV o+ Al + 1) 0
AV _
0 Tray (y+mp+r+Al+u)
. _ I a4 [REAVARN RERVA _
Set the functiorP(x) = P(S,I ,V) = diagt1,— ,— ¢, thenP, P~ =diag{0,— —— ,— ——}. The matrix
V'V I V1 V

B =P,P™ + PJ®P™ can be written in block form as

B= ( Bll BlZJ '
BZl B22

with B, = — AV +2u +ytr
AV ’

g o SV ASV
ol @rav) (1ray) )

Q‘(& _Vj
B,=| V4 ,

0
'V AV
- Y +u+ Al + 0
Ry (1+0’1V y2n 2 /sz
B2 = AV YA '
: — (vt A+ )
1+aV Y,

Consider the norm iR® as [0, v, w)| = max(], |v| + W) where ¢, v, w) denotes the vector iR Letu denote
the Lozinskii measure with respect to this norm. Using the metifastimating: in [15], we have

H(B) <sup@, 9, ). (5.4)

Where g, = £4,,(B;)) +|BlJ » 0, = Hy(By) +|BZJ
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|Blz| |821| are matrix norms with respect to tllevector norm, angl{;,denotes the Lozinski’i measure with
respect to thd, norm.
From system (2.2) we can write

ASV

.
=AY , 55
S rav)] (y+u+r) (5.5)
Vv b, |

—=A| ==V |—-Lu, 5.6
Y, 2(;12 Jv He 58

Since By, is a scalar, its Lozinski"1 measure with respedirty vector norm iR" will be equal toB,. Thus

AV
Ho(By) =By = _(1+10'V 24 ty+ rj-
1

ASV

Also |812| =m.
1

On substituting the values ¢i#,(B;,) and|B,,|, g, will become

AV ASV
g, = - +2,u+y+r]+l—
' (1+a1V ' (1+aV)’ |
<- AV +24 +y+r +—/]15V
1+aV (1+aVv)]
:_( AV +2’ul+y+r]+|_+(y+,ul+r) [From (5.5)]
l+aV I
_ (A ny
| (1+ayv
|
< T (5.7)

Al
Now |821| = L(i —Vj. To calculate,ulo(Bzz), we add the absolute value of the off- diagonaiments
AV

to the diagonal one in each column B;z, and then take the maximum of two sums, see {#8h leads to
IV AV

AV Y
= — | AL+ ———-
Hio(B5,) Sup{ R, (1+0’1V ot A, ﬂ2j+1+ av'1 v (y+y1+r +A,l +,u2)},
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11
=SUP| V(i + AN ) =y A )
IV \%
YA
=|__V_('Ul+/12| +/12)'
On substituting the values ¢, (B,,) and|B,;|, g, will becomes
Al (b, YA
=2 | ==V |+————(u+Al+
g, v(uz ] RV CREARY D)
\% EAVA
=V+,uz+|——v—(,ul+/12| + ;) [From (5.6)]
X
:T_(:Ul +/12| )
I
Using equations (5.7) and (5.8) in equation (5») have
X

H(B) <sup(@, 9, )< |_ - (5.9)
Along each solutionX(t, Xo) to (2.2) such thak, [IK , the absorbing set, we have
1},u( B)dt < Iog 'O 7 (5.10)
to Tt '

Which further implies that

q2 I'TqSOOUp sup— Iogl% U

="H
<0

ie. q_2 < 0. Therefore all the conditions of Theorem (5.2 satisfied. Hence unique endemic equilibrilh_rﬁ is

globally stable il °.

NUMERICAL SIMULATIONS

In this section, we give numerical simulations sanpipg the theoretical findings. When we choosevalkies of
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the parameters a§y =200,b, =300, 14 =0.5, 11, =0.6, y=0.4, 4, =0.01, A, =0.02,a, =0.1,r = 0.4 for the
model thenE (S* =335.7049|" = 24.72888, = 225.92:exists and_l, =51.28> . Our simulation shows

endemic equiIibriunE* is asymptotically stable (see figure 1). To seedbpendence of the steady state valtef the
infective population on the parametet, we have plotted figure 2 for different values'cf keeping all others parameter
values same as for figure 1 and see that the iméepbpulation decreases as the parameténcreases. Further, we have

also plotted figure 3, 4, 5 to see the dependefcteady state value of the susceptible and infegiopulation on the

parameterd;, keeping all others parameter values same asgiaref 1 and noted that the susceptible populatioreases

and infective population decreases@sncreasesThe details are supplemented by numerical regiden in annexure.

Stability graph for the point
4068:335.7094, 1=24.72888, V=225.9217)
350
300
c 250 S
o e ¢ e o ¢ e o o mmm—— o ¢ —
I 200 -
=
8. 150 _— .V
a 100
50
o ¥
0 50 100 150 200 250
Time
Figure 1
Stability graph for I at different values of r
40
c 35 latr=0
)
g 30 :oooooooooooooooooooooooooooo ....... | at r=0.2
S 25 e
§_ o ====|atr=0.4
?: is T L T T latr=06
4 i
j? 10 — - latr=0.8
8 > = o latr=1
g 0
= 0 50 100 150 200 250
Time
Figure 2
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Stability graph for S at different values ofa,
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Stability graph for | at different values of a;
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Stability graph for V at different values of a,
300
_5 250
I [
S 200 vV (0.1)
$ P
5 150 -===V(0.2)
Q 100 BF—= s e = — s —
. V (0.4)
e s
5 — - V(0.5)
2
< 0
0 20 40 60 80 100 120
Time
Figure 5

CONCLUSIONS

In this paper, we have studied a vector-host epidenodel with saturated incidence and a treatmenttfon
proportionate to infectious populatidn The global stability of the disease-free equilibr state is established by
Lyapunov method and a geometric approach is usethéglobal stability of the endemic equilibriutate. The basic

reproduction number is obtained and it completeiednines the dynamics of the ODE model. The mbdsla globally

asymptotically stable disease-free solution whenthebasic reproduction numb&fO is less than or equal unity and has
a unique positive globally asymptotically stabledemic equilibrium wheneveE0 exceeds unity. However, it is clear

that when the disease is endemic, the steady\site | " of the infective individuals decreases as the tneat function
and @; increases, and” approaches zero as the treatment function @nignds to infinity. Thus, it will be of great
importance for public health management to maintiantreatment and saturation effects. In the atesefthe treatment

function and with@; = 0, the result is perfectly in agreement with Yanalef7].

Annexure

by b, M K 14 A A, a r U, S I \VA

200 300 0.5 0.6 0.4 0.01 0.02 0.L ( 74.07407 33%3135.93807] 272.5138
200 300 0.5 0.6 0.4 0.01 0.02 0.l 0j2 60.60p06 S5B@R.| 29.31446 247.1106
200 300 0.5 0.6 0.4 0.01 0.02 0.l 0j4 51.28P05 78BM™.| 24.72888 225.9217
200 300 0.5 0.6 0.4 0.01 0.02 0.l 0|6 44.44444 ®A®| 21.36612 207.9787
200 300 0.5 0.6 0.4 0.01 0.02 0.l 0/8 39.21b69 18.7946| 192.5889
200 300 0.5 0.6 0.4 0.01 0.02 0.l 1 35.08Y72 334.2916.76445 179.243p
200 300 0.5 0.6 0.4 0.01 0.02 0.l 0j2 60.60p06 S5B@R.| 29.31446 247.1106
200 300 0.5 0.6 0.4 0.01 0.02 0.p 0j2 60.60p06 58®6| 16.10975 174.6892
200 300 0.5 0.6 0.4 001 0.02 0.8 0j2 60.60p06 5BA2.| 11.10672 135.0962
200 300 0.5 0.6 0.4 0.01 0.02 0.4 0j2 60.60p06 3JEb| 8.474795 110.1344
200 300 0.5 0.6 0.4 0.01 0.02 0.p 0j2 60.60p06 92| 6.851271 92.95841
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