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ABSTRACT 

Global stability of an epidemic model for vector-borne disease was studied by Yang et al. [7]. A reinvestigation of 

the model with a saturated incidence rate and a treatment function proportionate to infectious population I is presented to 

understand the effect of the capacity for treatment. An equivalent system is obtained, which has two equilibriums: a 

disease-free equilibrium and an endemic equilibrium. The stability of these two equilibriums can be controlled by the basic 

reproduction number 0ℜ . The global stability of the disease-free equilibrium state is established by Lyapunov method and 

a geometric approach is used for the global stability of the endemic equilibrium state. The model has a globally 

asymptotically stable disease-free solution whenever the basic reproduction number 0ℜ  is less than or equal unity and has 

a unique positive globally asymptotically stable endemic equilibrium whenever 0ℜ  exceeds unity. Numerical examples 

are given for the model with different values of the parameters. Graphical presentations are also provided. The details are 

supplemented by numerical results given in annexure.  

KEYWORDS:  Epidemic Model, Vector-Borne Disease, Saturated Incidence, Equilibrium Point, Stability, Reproduction 
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AMS Subject Classification:  92D25,  92D30. 

1. INTRODUCTION  

The main purpose of this paper is to study the dynamics of Vector-borne disease and understand the effect of the 

capacity for treatment. Vector-borne diseases are infectious diseases caused by viruses, bacteria, protozoa or rickettsia 

which are primarily transmitted by disease transmitting biological agents (anthropoids), called vectors, who carry the 

disease without getting it themselves. Globally, malaria is the most prevalent vector-borne disease whose vectors are the 

mosquitoes. The mosquitoes are vectors of a number of infectious diseases most prominent among which are dengue (the 

second most important vector-borne disease), yellow fever, St Louis Encephalitis, Japanese Encephalitic, and West Nile 

Fever, caused by the West Nile Virus. The literature dealing with the mathematical theory and dynamics of vector-borne 

diseases are quite extensive. Many mathematical models concerning the emergence and reemergence of the vector-host 

infectious disease have been proposed and analyzed in the literature [9, 10]. The mathematical models of epidemiology for 

the West Nile virus and for dengue have been investigated in [1, 3] and [10, 11]. 

Mathematical modeling became considerable important tool in the study of epidemiology  because  it  helped  us  
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to  understand  the  observed  epidemiological  patterns,  disease control and provide understanding of the underlying 

mechanisms which influence the spread of disease and may suggest control strategies. The model formulation and its 

simulation with parameter estimation allow us to test for sensitivity and comparison of conjunctures. Treatment plays an 

important role to control or decrease the spread of diseases. Kar et al. [16,17] and Ujjainkar et al. [4] proposed an epidemic 

model with treatment function. Wei et al. [6] investigated an epidemic model of a vector-borne disease with direct 

transmission and the vector-mediated transmission. The global stability of an epidemic model for vector-borne disease was 

studied by Yang et al. [7]. Here we have reanalyzed the model [7] with saturated incidence and a treatment function 

proportionate to infectious population I. The only mode of transmission in this model is through the vector.  

The paper is organized as follows: In Section 2, a vector-host epidemic model with vector transmissions is 

presented, where the dynamics of the hosts and vectors are described by SIR and SI model, respectively. Equilibrium points 

and reproduction number are obtained in Section 3. The analysis of stability of the equilibrium of the model is investigated 

in Section 4 and Section 5. Numerical analysis and conclusion are given in Section 6 and Section 7.  

2. THE MATHEMATICAL MODEL  

In this section, a vector-host epidemic model with vector transmissions is presented and investigated, where the 

dynamics of the human hosts and vectors are described by SIR and SI model, respectively. The total host population 

1( )N t is partitioned into three distinct epidemiological subclasses which are susceptible, infectious and recovered, with 

sizes denoted by( )S t , ( )I t  and ( )R t , respectively, and the total vector population 2( )N t  is divided into susceptible 

and infectious, with the sizes denoted by ( )M t
 
and ( )V t , respectively. 

The dynamics of this infectious disease in the host and vector populations are described by the following system 

of nonlinear differential equations: 
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With the initial Conditions 0(0)S S= , 0(0)I I= , 0(0)R R= , 0(0)M M=  and 0(0)V V= . 

The parameters in the model stand for 

1b = Recruitment rate constant in the host population 

2b = Recruitment rate constant in the vector population 
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1µ = Death rate constant in the host population 

2µ = Death rate constant in the vector population 

γ = Recovery rate constant in the host population 

1λ = Transmission rate from infected vector population to susceptible host population 

2λ = Transmission rate from infected host population to susceptible vector population 

1α =Constant parameter  

r = Treatment rate constant in the host population. 

It is assumed that all parameters are positive. The total dynamics of host population can be determined from the 

differential equation 1 1 1 1/dN dt b Nµ= −
 
which is derived by adding first three equations of system (2.1). The total 

dynamics of vector population can be determined from the differential equation 2 2 2 2/dN dt b Nµ= −
 
which is 

derived by adding last two equations of system (2.1). It is easily seen that both for the host population and for the vector 

population the corresponding total population sizes are asymptotically constant: 1 1 1lim /
t

N b µ
→∞

= and 

2 2 2lim /
t

N b µ
→∞

= . This implies that in our model we can assume without loss of generality that 1 1 1/N b µ= ,

2 2 2/N b µ=  for all t ≥ 0 provided that 1 1(0) (0) (0) /S I R b µ+ + = , 2 2(0) (0) /M V b µ+ = .  

Therefore, we attact system (2.1) by studying the subsystem given by 
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(2.2)

  From biological considerations, we study the system (2.2) in the closed set  

 Γ = {( S, I, V) ∈ 3R+  
: 1 10 /S I b µ≤ + ≤ , 2 20 / , 0, 0V b S Iµ≤ ≤ ≥ ≥ }, 

 Where 3R+  denotes the nonnegative cone of 3R  including its lower dimensional faces. Obviously Γ is 

positively invariant set of (2.2).We denote by ∂Γ  and 0Γ  the boundary and the interior of Γ in 3R , respectively.  

3. MATHEMATICAL ANALYSIS OF THE MODEL  

Equilibrium points of model (2.2) can be obtained by equating right hand side to zero. The system (2.2) has two 



4                                                                                                                                                                      Sneha Porwal, S. Jain, R. Khandelwal & G. Ujjainkar 

 
Impact Factor (JCC): 2.0346                                                                                                                   NAAS Rating: 3.19 

equilibrium states: the disease-free equilibrium 0E  = ( 1

1

b

µ
, 0, 0) ∈ ∂Γ  and a unique endemic equilibrium                     

E∗
= ( ), ,S I V∗ ∗ ∗ 0∈ Γ  with  
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The dynamics of the disease are described by the basic reproduction number 0ℜ .The threshold quantity 0ℜ is 

called the reproduction number, which is defined as the average number of secondary infections produced by an infected 

individual in a completely susceptible population. The basic reproduction number of model (2.2) is given by the expression  

1 2 1 2
0 2

1 2 1
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( )

b b

r

λ λ
µ µ γ µ
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+ +

                                                                                              (3.4) 

For 0 1ℜ ≤ , the only equilibrium is disease-free equilibrium 0E  in ∂Γ and for 0 1,ℜ > there is a unique endemic 

equilibrium E∗
  in 

0Γ  .  

4. STABILITY OF THE DISEASE-FREE EQUILIBRIUM  

In this section we discuss the stability of the disease-free equilibrium 0E  . 

Theorem 4.1: The disease-free equilibrium 0E
 
of (2.2) is locally asymptotically stable in Γ if 0 1ℜ < ; it is 

unstable if 0 1ℜ > . 

Proof: To discuss the stability of the system (2.2) the variational matrix is  
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At the equilibrium point 0E  = ( 1

1

b

µ
, 0, 0), the variational matrix becomes 
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Its characteristic equation is 
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                                              (4.1)

 

By Descartes rule of sign all roots of equation (4.1) are negative if 0 1ℜ <  .Thus, if 0 1ℜ <  then the disease-free 

equilibrium 0E  is locally asymptotically stable; Otherwise, if 0 1ℜ > then it is unstable. 

Theorem 4.2: If 0 1ℜ ≤ , then the disease - free equilibrium 0E  is globally asymptotically stable in Γ. 

Proof: To establish the global stability of the disease-free equilibrium, we construct the following Lyapunov 

function:  

1 2 1 1L I bVµ µ λ= + . 

Clearly, 0L ≥
 
along the solutions of the system (2.2) and is zero if and only if both I  and V  are zero. 

Calculating the time derivative of L along the solutions of system (2.2), we obtain 
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Where in the first inequality we have used the fact that 
1

1

1
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≤

 
and  1

1

b
S

µ
≤  in Γ. In addition, the last 

inequality follows from the assumption that 0 1ℜ ≤ . Thus 
.
( )L t  is negative if 0 1ℜ ≤ .When 0 1ℜ < , the derivative 

.
L = 

0 if and only if I  = 0, while in the case 0 1ℜ =
 
the derivative 

.
L = 0 if and only if I  = 0 or V = 0. Consequently, the 
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largest compact invariant set in {( S, I, V) ∈ Γ: 
.
L = 0}  when 0 1ℜ ≤ , is the singleton { 0E }. Hence, LaSalle’s invariance 

principle [8] implies that 0E  is globally asymptotically stable in Γ. This completes the proof. 

STABILITY OF THE ENDEMIC EQUILIBRIUM  

In this section we discuss the stability of the endemic equilibrium E∗
 . 

Theorem 5.1: If 0 1ℜ > , then the endemic equilibrium E∗  of (2.2) is locally asymptotically stable in
0Γ . 

Proof: At the equilibrium point E∗
, the variational matrix becomes 
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It can be easily seen that1 2 3, , 0a a a ≥ . By Descartes rule of sign all roots of equation (5.1) are negative. Thus, 

the endemic equilibrium E∗  is locally asymptotically stable in
0Γ . 

Now, we analyze the global behavior of the endemic equilibrium E∗
. Here, we use the geometrical approach of 

Li and Muldowney [14] to investigate the global stability of the endemic equilibrium *E in the feasible region Γ. We have 

omitted the detailed introduction of this approach and we refer the interested readers to see [14]. We summarize this 

approach below. 

Let  ( ) nx f x R∈a  be a  
1C  function for x in an open set D ⊂

nR . Consider the differential equation 

'x = f(x).                                                                                                                                                               (5.2) 

Denote by x (t, 0x ) the solution of (5.2) such that x(0, 0x ) = 0x . We have following assumptions: 

( 1H ) D is simply connected; 

( 2H ) There exists a compact absorbing set K ⊂ D; 

( 3H ) Equation (5.2) has unique equilibrium x  in D. 

Let P : x a  P(x) be a nonsingular  (
2

n ) × (
2

n )  matrix-valued function which is 
1C  in D and a vector norm  | · | 

on NR , where N = (
2

n ). Let µ be the Lozinski˘ı measure with respect to the   | · |. 

Define a quantity 2q  as  
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2 0
0

1
lim sup sup ( ( ( , ))) ,

→∞ →
= ∫

ot x K

t
q B x s x ds

t
µ                                                                                                       (5.3) 

Where 1 [2] 1
fB P P PJ P− −= + , the matrix fP  is obtained by replacing each entry p of P by its derivative in the 

direction of f, ( )ij f
p , and 

[2]J  is the second additive compound matrix of the Jacobian matrix J of  (5.2). The following 

result has been established in Li and Muldowney [14]. 

Theorem 5.2: Suppose that ( 1H ), ( 2H ) and ( 3H ) hold, the unique endemic equilibrium *E  is globally stable 

in 0Γ  if 2q  < 0. 

Obviously 0Γ  is simply connected and *E  is unique endemic equilibrium for 0 1ℜ >
 
in

0Γ . To apply the 

result of the above theorem for global stability of endemic equilibrium
*E , we first state and prove the following result. 

Lemma 5.3: If 0 1ℜ > , then the system (2.2) is uniformly persistent in 0Γ .  

System (2.2) is said to be uniformly persistent [2] if there exists a constant c > 0, independent of initial data in

0Γ , such that any solution (S(t), I(t), V(t)) of (2.2) satisfies  

liminf
t

S c
→∞

≥ , liminf
t

I c
→∞

≥  , liminf
t

V c
→∞

≥
 

Provided  (S(0), I(0), V(0)) 
0∈ Γ . 

The uniform persistence of (2.2) can be proved by applying a uniform persistence result in [5, Theorem 4.3], and 

using a similar argument as in the proof of proposition 3.3 of [13]. The proof is omitted.  

The boundedness of 0Γ  and the above lemma imply that (2.2) has a compact absorbing set K ⊂ 0Γ  [2]. Now we 

shall prove that the quantity 2q  < 0. 

Let x = ( ), ,VS I and f(x) denote the vector field of (2.2). The Jacobian matrix J = 
f
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∂
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( )

( )

( )

1 1
1 2

1 1

1 1
1 2

1 1

2
2 2 2

2

0
1 1

( ) ,
1 1

0

V S
V V

V S
rJ

V V

b
V I

λ λµ
α α
λ λγ µ
α α

λ λ µ
µ

  +− −  + +  
 
 − + +=

+ +
 

  − − +  
  

 

 and its second additive compound matrix 
[2]J  is,  
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Consider the norm in 3R  as |(u, v, w)| = max(|u|, |v| + |w|) where (u, v, w) denotes the vector in 3R . Let µ denote 

the Lozinskiĭ measure with respect to this norm. Using the method of estimating µ in [15], we have 

1 2( ) sup( , )B g gµ ≤ ,                                                                                                                                       (5.4) 

Where 1 10 11 12( )g B Bµ= + ,  2 10 22 21( )g B Bµ= +
.
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12B ,
 21B  are matrix norms with respect to the 

1
l

 
vector norm, and 10µ denotes the Lozinski˘i measure with 

respect to the 
1
l norm. 

From system (2.2) we can write 

( )
'

1
1

1

)
,

(1 I

SV

V

I
r

I
µ

α
λ γ= − + +
+

                                                                                                                       (5.5)  

'
2

2 2
2

bV I
V

V V
λ µ

µ
 −= − 
 

,                                                                                                                             (5.6) 

Since 11B  is a scalar, its Lozinski˘ı measure with respect to any vector norm in 1R  will be   equal to 11B . Thus  

1
110 11 11

1

2( ) .
1

V
rB B

V

λ µ γµ
α

 + + += = −  +   

Also 
( )

1
12 2

1

.
1

SV
B

IV

λ
α

=
+

 

On substituting the values of 10 11( )Bµ and 12 ,B 1g  will become  

( )
1 1

11 2
1 1

2
1 1

V SV
rg

V IV

λ λµ γ
α α

 + + += − + + +   

     
( )

1 1
1

1 1

2
1 1

V SV
r

V IV

λ λµ γ
α α

 + + +≤ − + + + 
 

                    

( )
'

1
1 1

1

2
1

V I
r r

V I

λ µ γ γ µ
α

 + + += − + + + + + 
                                                                        [From (5.5)] 

                   

'
1

1
11

λ µ
α

 += −  + 

VI
VI  

                   

'

1 . ( 5 .7 )
I

I
µ≤ −  

 Now 22
21

2

.
bI

VB
V

λ
µ

 −=  
   

To calculate 10 22( )Bµ , we add the absolute value of the off- diagonal elements 

to the diagonal one in each column of 22B , and then take the maximum of two sums, see [18], which leads to                                      

 

( )
' ' ' '

1 1
1 2 210 22 1 2 2

1 1

( ) sup ,
1 1

V VI V I V
IB r I

VI V V I V

λ λµ λ µµ γ µ λ µ
α α

  + + += − − + − − + + + +  + +  
, 
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( ) ( )
' ' ' '

1 2 2 1 2 2sup ,
I V I V

I r I
I V I V

µ λ µ γ µ λ µ 
= − − − −+ + + + + + 

 
 

                 = ( )
' '

1 2 2

I V
I

I V
µ λ µ− − + + . 

On substituting the values of 10 22( )Bµ  and 21B , 2g  will becomes

 

 

( )
' '

22
2 1 2 2

2

bI I V
Vg I

V I V

λ µ λ µ
µ

 −= + − − + + 
 

 

                                                        
( )

' ' '

2 1 2 2

V I V
I

V I V
µ µ λ µ= + + − − + +

                                            

[From (5.6)] 

                                                      
( )

'

1 2

I
I

I
µ λ= − +  

                                                              
'

1. (5.8)
I

I
µ≤ −  

 Using equations (5.7) and (5.8) in equation (5.4), we have 

            
'

1 2 1( ) sup( , ) .
I

B g g
I

µ µ≤ ≤ −                                                                                                                           (5.9) 

Along each solution 0( , )x t x  to (2.2) such that 0 ∈x K  , the absorbing set, we have 

              ( ) 1
0

1 1 ( )
log ,

(0)
≤ −∫

t I t
B dt

t t I
µ µ                                                                                                                       (5.10) 

Which further implies that  

2 1

1 ( )
limsup sup log

(0)ot x K

I t
q

t I
µ

→∞ →
≤ −

 

     1µ= −
 

                    0<
 

i.e. 2q  < 0. Therefore all the conditions of Theorem (5.2) are satisfied. Hence unique endemic equilibrium *E  is 

globally stable in 0Γ . 

NUMERICAL SIMULATIONS  

In this section, we give numerical simulations supporting the theoretical findings. When we choose the values of 
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the parameters as:
 1 200,b = 2 300,b = 1 0.5,µ = 2 0.6,µ = 0.4,γ = 1 0.01,λ = 2 0.02,λ = 1 0.1,α = 0.4r =  for the 

model then 
* * * *( 335.7049, 24.72888, 225.9217)E S I V= = =  exists and 0 51.28 1ℜ = > . Our simulation shows 

endemic equilibrium *E is asymptotically stable (see figure 1). To see the dependence of the steady state value ∗
I of the 

infective population on the parameter ‘r’, we have plotted figure 2 for different values of ‘r’, keeping all others parameter 

values same as for figure 1 and see that the infective population decreases as the parameter ‘r’ increases. Further, we have 

also plotted figure 3, 4, 5 to see the dependence of steady state value of the susceptible and infective population on the 

parameter α
1
, keeping all others parameter values same as for figure 1 and noted that the susceptible population increases 

and infective population decreases as α
1
increases. The details are supplemented by numerical results given in annexure.       

                

Figure 1 
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Figure 3 

 

Figure 4 
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Figure 5 

CONCLUSIONS 

In this paper, we have studied a vector-host epidemic model with saturated incidence and a treatment function 

proportionate to infectious population I. The global stability of the disease-free equilibrium state is established by 

Lyapunov method and a geometric approach is used for the global stability of the endemic equilibrium state. The basic 

reproduction number is obtained and it completely determines the dynamics of the ODE model. The model has a globally 

asymptotically stable disease-free solution whenever the basic reproduction number 0ℜ  is less than or equal unity and has 

a unique positive globally asymptotically stable endemic equilibrium whenever 0ℜ  exceeds unity. However, it is clear 

that when the disease is endemic, the steady state value *I of the infective individuals decreases as the treatment function 

and 1α  increases, and *I approaches zero as the treatment function and 1α tends to infinity. Thus, it will be of great 

importance for public health management to maintain the treatment and saturation effects. In the absence of the treatment 

function and with 1 0α = , the result is perfectly in agreement with Yang et al. [7]. 

Annexure 

1b  2b  1µ  1µ  γ 1λ  2λ  1α  r 0ℜ  *S  *I  
*V  

200 300 0.5 0.6 0.4 0.01 0.02 0.1 0 74.07407 335.3115 35.93807 272.5138 
200 300 0.5 0.6 0.4 0.01 0.02 0.1 0.2 60.60606 335.5082 29.31446 247.1106 
200 300 0.5 0.6 0.4 0.01 0.02 0.1 0.4 51.28205 335.7049 24.72888 225.9217 
200 300 0.5 0.6 0.4 0.01 0.02 0.1 0.6 44.44444 335.9016 21.36612 207.9787 
200 300 0.5 0.6 0.4 0.01 0.02 0.1 0.8 39.21569 336.0984 18.7946 192.5889 
200 300 0.5 0.6 0.4 0.01 0.02 0.1 1 35.08772 336.2951 16.76445 179.2435 
200 300 0.5 0.6 0.4 0.01 0.02 0.1 0.2 60.60606 335.5082 29.31446 247.1106 
200 300 0.5 0.6 0.4 0.01 0.02 0.2 0.2 60.60606 364.5586 16.10975 174.6892 
200 300 0.5 0.6 O.4 0.01 0.02 0.3 0.2 60.60606 375.5652 11.10672 135.0962 
200 300 0.5 0.6 0.4 0.01 0.02 0.4 0.2 60.60606 381.3555 8.474795 110.1344 
200 300 0.5 0.6 0.4 0.01 0.02 0.5 0.2 60.60606 384.9272 6.851271 92.95841 
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